Gamma-Ray Sterilization Effects in Silica Nanoparticles/γ-APTES Nanocomposite-Based pH-Sensitive Polysilicon Wire Sensors
نویسندگان
چکیده
In this paper, we report the γ-ray sterilization effects in pH-sensitive polysilicon wire (PSW) sensors using a mixture of 3-aminopropyltriethoxysilane (γ-APTES) and polydimethylsiloxane (PDMS)-treated hydrophobic fumed silica nanoparticles (NPs) as a sensing membrane. pH analyses showed that the γ-ray irradiation-induced sensitivity degradation of the PSW pH sensor covered with γ-APTES/silica NPs nanocomposite (γ-APTES+NPs) could be restored to a condition even better than prior to γ-ray irradiation by 40-min of post-sterilization room-temperature UV annealing. We found that the trapping charges caused by γ-ray sterilization primarily concentrated in the native oxide layer for the pH sensor covered with γ-APTES, but accumulated in the γ-APTES+NPs layer for the γ-APTES+NPs-covered sensor. It is believed that mixing the PDMS-treated silica NPs into γ-APTES provides many γ-APTES/SiO(2) interfaces for the accumulation of trapping charges and for post-sterilization UV oxidation, thus restoring γ-ray-induced sensor degradation. The PDMS-treated silica NPs not only enhance the sensitivity of the pH-sensitive PSW sensors but are also able to withstand the two-step sterilization resulting from γ-ray and UV irradiations. This investigation suggests γ-ray irradiation could be used as a highly-efficient sterilization method for γ-APTES-based pH-sensitive biosensors.
منابع مشابه
Characteristics of Polysilicon Wire Glucose Sensors with a Surface Modified by Silica Nanoparticles/γ-APTES Nanocomposite
This report investigates the sensing characteristics of polysilicon wire (PSW) glucose biosensors, including thickness characteristics and line-width effects on detection limits, linear range and interference immunity with membranes coated by micropipette/spin-coating and focus-ion-beam (FIB) processed capillary atomic-force-microscopy (C-AFM) tip scan/coating methods. The PSW surface was modif...
متن کاملEffects of Colloidal Nanosilica on Epoxy-based Nanocomposite Coatings
Epoxy-based nanocomposites were fabricated with different content of colloidal silica nanoparticles such as 10.0, 20.0 and 30.0 wt %, through solution casting. The covalent bonding interfaces, resulting from a ring-opening reaction between silica nanoparticles and epoxy matrix were confirmed by the Fourier transform (FT-IR) infrared spectroscopy. These nanocomposites were characterized for ...
متن کاملPolymethylmethacrylate/Silver Nanocomposite Prepared by γ-Ray
Polymethylmethacrylate-silver (PMMA/Ag) nanocomposite is synthesized by irradiating the solution of silver ions in methylmethacrylate monomer by γ-ray. In this method, polymerization of the methylmethacrylate monomer and the silver ion reduction occurred simultaneously. Optical properties of the PMMA/Ag solutions are investigated using UV-Vis spectroscopy. The structural characterizations of th...
متن کاملSynthesis and Characterization of Polymer/Nanosilicagel Nano-composites
In this study, a polymer-silica nanocomposite using the sol-gel method was synthesized in three steps at room temperature. The nanocomposite material was formed with an organic compound (polyethylene glycol) and inorganic silica nanoparticles. Furthermore, the size and the distribution of nanoparticles in the polymer matrix were characterized by a transmission electron microscope (TEM). In add...
متن کاملEvaluation of protein corona formation and anticancer efficiency of curcumin-loaded zwitterionic silica nanoparticles
Objective(s): Study and development of antifouling nanosystem for conjugation of drugs were attracting great attention in recent years. The present study aimed to develop novel curcumin-loaded silica nanoparticles containing zwitterionic coating as an antifouling system to provide protein corona free nanoformulations for curcumin. Materials and Methods: Silica nanoparticles were prepared ...
متن کامل